

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	datatree 0.1.8.1 documentation

DataTree

Summary

DataTree is a DSL for creating structured documents in python. Inspired by
ruby builder [http://builder.rubyforge.org/] but with the goal of reducing the amount of line noise associated
with creating XML documents in python. As an added bonus the tree can be output
to to any structured format (with XML, JSON and YAML supported in the library).

Note: More documentation is coming soon but for now a very basic rough draft can be
found at datatree.readthedocs.org [http://datatree.readthedocs.org/].

Installation

You can install via PyPi [http://pypi.python.org/pypi/datatree/] or direct
from the github [https://github.com/bigjason/datatree] repo.

To install with pip:

$ pip install datatree

To install with easy_install:

$ easy_install datatree

Example

A small example:

from datatree import Tree, Node

tree = Tree()
with tree.author() as author:
 author.name('Terry Pratchett')
 author.genre('Fantasy/Comedy')
 author // "Only 2 books listed"
 with author.novels(count=2) as novels:
 novels.novel('Small Gods', year=1992)
 novels.novel('The Fifth Elephant', year=1999)
 novels << Node("novel", "Guards! Guards!", year=1989)

print tree(pretty=True)

Which produces the XML:

<author>
 <name>Terry Pratchett</name>
 <genre>Fantasy/Comedy</genre>
 <!-- Only 2 books listed -->
 <novels count="2">
 <novel year="1992">Small Gods</novel>
 <novel year="1999">The Fifth Elephant</novel>
 <novel year="1989">Guards! Guards!</novel>
 </novels>
</author>

Or the JSON:

{
 "author": {
 "genre": "Fantasy/Comedy",
 "name": "Terry Pratchett",
 "novels": [
 "Small Gods",
 "The Fifth Elephant",
 "Guards! Guards!"
]
 }
}

Or the YAML:

author:
 genre: Fantasy/Comedy
 name: Terry Pratchett
 novels: [Small Gods, The Fifth Elephant, Guards! Guards!]

License

This work is licensed under the Apache License, Version 2.0 [http://www.apache.org/licenses/LICENSE-2.0.html].

Souce Code

The source code can be found on github [https://github.com/bigjason/datatree].

Feedback

I welcome any and all constructive feedback. Feel free to contact me (Jason Webb) at
www.bigjason.com [http://www.bigjason.com/] or on twitter
@bigjasonwebb [http://www.twitter.com/BigJasonWebb].

Contributing

Contributions are welcome. Just fork on github [https://github.com/bigjason/datatree] and I will try to be as responsive
as possible.

Contents:

	Basic Usage
	Building Data Trees

	Emitting Formatted Data

	API
	Tree

	Node

	Renderers

	Change Log
	0.1.8.1

	0.1.8

	0.1.7

	0.1.6

	0.1.5

	0.1.1

	0.1

	Planned Features

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2011, Jason Webb.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	datatree 0.1.8.1 documentation

Basic Usage

Building Data Trees

Working with datatree begins with the Tree class:

tree = Tree()

To add a new node to the tree you simply call a function with the name of the
new node that you wish to add. So to add a root node to the tree you could:

tree.root()

All nodes are also context managers. This allows for very logical building of the
tree like so:

with tree.root() as root:
 root.name("Bob Smith")

There are some various options when adding nodes, although most of them are only
relevent if you are creating XML. When adding a node, any **kwargs argument
passed in is converted to an attribute:

with tree.root() as root:
 root.name("Bob Smith", gender='Male')

Emitting Formatted Data

Renderers are used to output your datatree into a dataformat. These are simple
classes that translate the Tree into a specific format. By
default XML is used. However an alias can be used for a different format. Additionaly
all of the **kwargs are used to pass specific options to the renderer. To output
pretty XML:

tree = Tree()
with tree.root() as root:
 root.name("Bob Smith", full=True)
print tree('xml', pretty=True)

Outputs:

<root>
 <name full="True">Bob Smith</name>
</root>

The aliases for the formats are as follows:

	Renderer
	Alias(s)

	XML
	xml, [blank]

	JSON
	json, jsn

	YAML
	yaml, yml

	Python dict
	dict, dictionary

 Copyright 2011, Jason Webb.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	datatree 0.1.8.1 documentation

API

The API is mostly dynamic and so by nature difficult to document. If you have
any suggestions for this please leave a note for me at
www.bigjason.com [http://www.bigjason.com/].

Tree

You can call (almost) any method name on the Tree to create a
new Node.

	
class datatree.Tree(*args, **kwargs)

	Very top node in a datatree.

The Tree is the top node used to build a datatree.

	
COMMENT(text)

	Adds a comment to the node. Alternatively you can use the // operator
to create comments like this: tree // "A comment in here". With the
XmlRenderer this would produce the comment <!--A comment in here -->.

Note: Comments are ignored by some of the renderers such as json and dict.
Consult the documentation to find out the behaviour.

	Parameters:	text – Text of the comment.

	
DECLARE(name, *attrs)

	Add an xml declaration to the datatree.

Note: This functionality is pretty limited for the time being, hopefully
the API for this will become more clear with time.

	Parameters:	
	name – Name of the declaration node.

	attrs – Extra attributes to be added. Strings will be added as
quoted strings. Symbols will be added as unquoted strings. Import
the __ object and use it like this: __.SomeValue to add a
symbol.

	
INSTRUCT(name='xml', **attrs)

	Add an xml processing instruction.

	Parameters:	
	name – Name of the instruction node. A value of xml will create
the instruction <?xml ?>.

	attrs – Any extra attributes for the instruction.

	
add_child_node(child_node)

	For use when adding an existing Node.

	
register_renderer(klass)

	Register a renderer class with the datatree rendering system.

	Parameters:	klass – Either a string with the fully qualified name of the
renderer class to register, or the actual class itself. The name
will be read from the class.

	
render(renderer='xml', as_root=False, **options)

	Render the datatree using the provided renderer.

	Parameters:	
	renderer – The name of the renderer to use. You may add more
renderers by using the register_renderer method.

	as_root – If True, the tree will be rendered from this node down,
otherwise rendering will happen from the tree root.

	options – Key value pairs of options that will be passed to
the renderer.

	
to_string(level=0)

	Create an ugly representation of the datatree from this node down. This
is included as a debug aid and is not good for much else.

Node

Node is not instantiated directly, but is created for every node added to the
Tree.

	
class datatree.tree.Node(node_name='root', node_value=None, **attrs)

	
	
COMMENT(text)

	Adds a comment to the node. Alternatively you can use the // operator
to create comments like this: tree // "A comment in here". With the
XmlRenderer this would produce the comment <!--A comment in here -->.

Note: Comments are ignored by some of the renderers such as json and dict.
Consult the documentation to find out the behaviour.

	Parameters:	text – Text of the comment.

	
add_child_node(child_node)

	For use when adding an existing Node.

	
register_renderer(klass)

	Register a renderer class with the datatree rendering system.

	Parameters:	klass – Either a string with the fully qualified name of the
renderer class to register, or the actual class itself. The name
will be read from the class.

	
render(renderer='xml', as_root=False, **options)

	Render the datatree using the provided renderer.

	Parameters:	
	renderer – The name of the renderer to use. You may add more
renderers by using the register_renderer method.

	as_root – If True, the tree will be rendered from this node down,
otherwise rendering will happen from the tree root.

	options – Key value pairs of options that will be passed to
the renderer.

	
to_string(level=0)

	Create an ugly representation of the datatree from this node down. This
is included as a debug aid and is not good for much else.

Renderers

The renderers are responsible for converting the datatree into a usable
format. Usually this format is a string, but sometimes other formats are
used.

The examples in this section use this datatree:

from datatree import Tree

tree = Tree()
with tree.author() as author:
 author.name('Terry Pratchett')
 author.genre('Fantasy/Comedy')
 author // "Only 2 books listed"
 with author.novels(count=2) as novels:
 novels.novel('Small Gods', year=1992)
 novels.novel('The Fifth Elephant', year=1999)
 novels << Node("novel", "Guards! Guards!", year=1989)

XmlRenderer

Outputs the tree as an xml string. It is available under the alias 'xml'.

Options

	Name
	Description
	Default

	pretty
	When True, Outputs the xml document with pretty formatting.
	False

	indent
	Used with pretty formatting. It is the string that will
be used to indent each level.
	' '

Example Output

tree('xml', pretty=True)

Or even shorter:

tree(pretty=True)

<author>
 <name>Terry Pratchett</name>
 <genre>Fantasy/Comedy</genre>
 <!-- Only 2 books listed -->
 <novels count="2">
 <novel year="1992">Small Gods</novel>
 <novel year="1999">The Fifth Elephant</novel>
 <novel year="1989">Guards! Guards!</novel>
 </novels>
</author>

JsonRenderer

Outputs the tree as json string using the python json module. It is available
under the alias 'json', 'jsn' or 'js'.

Options

	Name
	Description
	Default

	pretty
	Outputs the json document with pretty formatting.
	False

	sort_keys
	Sorts the keys in the json document.
	False

Example Output

tree('json', pretty=True)

{
 "author": {
 "genre": "Fantasy/Comedy",
 "name": "Terry Pratchett",
 "novels": [
 "Small Gods",
 "The Fifth Elephant",
 "Guards! Guards!"
]
 }
}

YamlRenderer

Outputs the tree as yaml string using the PyYAML [http://pypi.python.org/pypi/PyYAML/]
package (which must be installed). It is available under the alias 'yaml'
or 'yml'.

Options

	Name
	Description
	Default

	None
	
	

Example Output

tree('yaml')

author:
 genre: Fantasy/Comedy
 name: Terry Pratchett
 novels: [Small Gods, The Fifth Elephant, Guards! Guards!]

DictRenderer

Outputs the tree as python dict. It is available under the alias 'dict'
and 'dictionary'.

Options

	Name
	Description
	Default

	pretty_string
	When True, outputs the dict as a string with pretty
formatting.
	False

	allow_node_loss
	Determines if a duplicate node name will result in a node
loss due to duplicate keys in the dict.
	False

Example Output

tree('dict', pretty_string=True)

{'author': {'genre': 'Fantasy/Comedy',
 'name': 'Terry Pratchett',
 'novels': ['Small Gods', 'The Fifth Elephant', 'Guards! Guards!']}}

Duplicate Node Names

While xml handles duplicate nodes just fine, python dicts and json for that matter
do not allow duplicates. To handle this the DictRenderer will attempt to
group nodes with the same name into a sub dictionary. This is why in the above
example there is only one key for “novels”.

ETreeRenderer

Outputs the tree as an elementtree. It is available under the alias 'etree'.

Note: This module is not fully implemented. It supports the basic node
types, but not comments, declarations, instructions or cdata.

Options

	Name
	Description
	Default

	as_string
	Outputs the document as a string instead of a
populated elementtree.
	False

Implementing a Renderer

You can implement your own renderer. Just look at the source for one of the
existing renderers and implement the same methods, and then register your plugin
with the register_renderer() method.

 Copyright 2011, Jason Webb.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	datatree 0.1.8.1 documentation

Change Log

	0.1.8.1

	0.1.8

	0.1.7

	0.1.6

	0.1.5

	0.1.1

	0.1

0.1.8.1

	Release Date:	TBD

	Changed license to Apache License, Version 2.0 [http://www.apache.org/licenses/LICENSE-2.0.html].

	Added coverage.py to the test suite along with some testing updates.

0.1.8

	Release Date:	06-21-2011

	JsonRenderer pretty option
now defaults to False.

	Documentation updates.

	Bug fixes.

0.1.7

	Release Date:	06-16-2011

	Any node in a data tree can now be used to render the entire tree.

	More documentation.

	Bug fixes.

0.1.6

	Release Date:	06-16-2011

	Fix xml pretty rendering bad xml.

	More documentation.

0.1.5

	Release Date:	06-15-2011

	Support for python 2.6.

	Bug fixes.

0.1.1

	Release Date:	06-15-2011

	Renamed S class to n and removed the SubNode class.

	Bug fixes.

0.1

	Release Date:	06-15-2011

	First stable release.

 Copyright 2011, Jason Webb.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	datatree 0.1.8.1 documentation

Planned Features

	Support for xml namespaces.

	Addition of an HTML renderer.

	Full unicode support.

	More operator overloads (jury still out on this one).

	A solution for including attributes in the DictRenderer, which will trickle
down to JsonRenderer and YamlRenderer.

	A more unified and maintainable test suite.

	Python 3.2 support.

 Copyright 2011, Jason Webb.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	datatree 0.1.8.1 documentation

 Python Module Index

 d

 			

 		
 d	

 	[image: -]
 	
 datatree	

 	
 	
 datatree.render.dictrender	

 	
 	
 datatree.render.etreerender	

 	
 	
 datatree.render.jsonrender	

 	
 	
 datatree.render.xmlrenderer	

 	
 	
 datatree.render.yamlrender	

 Copyright 2011, Jason Webb.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	datatree 0.1.8.1 documentation

Index

 A
 | C
 | D
 | I
 | N
 | R
 | T

A

 	

 	add_child_node() (datatree.Tree method)

 	

 	(datatree.tree.Node method)

C

 	

 	COMMENT() (datatree.Tree method)

 	

 	(datatree.tree.Node method)

D

 	

 	datatree (module)

 	datatree.render.dictrender (module)

 	datatree.render.etreerender (module)

 	datatree.render.jsonrender (module)

 	

 	datatree.render.xmlrenderer (module)

 	datatree.render.yamlrender (module)

 	DECLARE() (datatree.Tree method)

I

 	

 	INSTRUCT() (datatree.Tree method)

N

 	

 	Node (class in datatree.tree)

R

 	

 	register_renderer() (datatree.Tree method)

 	

 	(datatree.tree.Node method)

 	

 	render() (datatree.Tree method)

 	

 	(datatree.tree.Node method)

T

 	

 	to_string() (datatree.Tree method)

 	

 	(datatree.tree.Node method)

 	

 	Tree (class in datatree)

 Copyright 2011, Jason Webb.
 Created using Sphinx 1.3.1.

 _static/down.png

_static/minus.png

_static/plus.png

search.html

 Navigation

 		
 index

 		
 modules |

 		datatree 0.1.8.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2011, Jason Webb.
 Created using Sphinx 1.3.1.

_static/comment-close.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment.png

_static/comment-bright.png

_static/up.png

_static/down-pressed.png

_static/file.png

